1) Atelier Physico-chimie et caractérisation des atmosphères planétaires | 25-27 mai 2021 | Hybride

L'atelier commun GDR EMIE – GDR SpecMo - «Physico-chimie et caractérisation des atmosphères planétaires », initialement prévu l'an dernier, va avoir lieu du 25 au 27 mai 2021 à la Villa Clythia à Fréjus (https://www.caes.cnrs.fr/sejours/la-villa-clythia/).

L'atelier sera organisé en format hybride, avec des conférences données en présentiel et à distance, dans le strict respect des règles sanitaires.

Les informations concernant le programme, les contributions, les inscriptions et tarifs seront mises à jour au fur et à mesure sur le site du GDR (https://www-liphy.univ-grenoble-alpes.fr/emie/) ainsi que sur le site dédié à l'atelier sur ScienceConf (https://atelier-atmo.sciencesconf.org/).

Thème de l'atelier
Les sciences atmosphériques sont à l'interface entre sciences chimiques, sciences physiques, astrophysique et sciences de l'environnement. Aux climats présents et passés de la Terre et des planètes du Système solaire vient aujourd'hui s'ajouter la diversité des climats exo-planétaires. Dans ce vaste domaine, les mêmes principes physiques et chimiques sont à l'oeuvre mais contrôlés par des paramètres fortement variables : propriétés de l'étoile ; gravité, rayon, rotation et orbite de la planète; masse et composition de l'atmosphère; présence et distribution d'un réservoir condensable à l'origine de la formation de brumes ; topographie de surface et flux de chaleur interne. Les influences de ces paramètres sont couplées dans des mécanismes complexes parfois très sensibles, pouvant faire basculer une planète d'un régime climatique à un autre. A l'échelle microscopique, la formation et l'évolution des atmosphères planétaires, qui se produisent sur des échelles de temps et d'espaces très vastes, reposent sur une grande variété de processus physico chimiques d'interaction gaz-particules et gaz-gaz.
L'objectif de cet atelier est de réunir les chercheurs impliqués dans la description et la modélisation des processus physico-chimiques des atmosphères planétaires au sens large. Ces journées favoriseront les échanges entre théoriciens, modélisateurs et expérimentateurs des communautés du GDR EMIE et du GDR SpecMo. Elles permettront de partager et de croiser les avancées récentes de nos connaissances obtenues par des approches théoriques, expérimentales et observationnelles. L'atelier sera articulé autour de présentations orales organisées en sessions thématiques.

Conférenciers invités
Michel Viso (CNES, Paris) - à confirmer
Christian Georges (IRCELYON, Lyon)
Céline Toubin (PhLAM, Lille)
Franck Selsis (LAB, Bordeaux)
Panayotis Lavvas (GSMA, Reims) - à confirmer
Séverine Robert (Royal Belgian Institute for Space Aeronomy)
Gaëlle Dufour (LISA, Paris-Est Créteil)

Comité d'organisation : Sophie Sobanska (ISM, Bordeaux), Ha Tran (LMD, Paris), et Robert Georges (IPR, Rennes).



2) Astronet Science Vision and Infrastructure Roadmap for European Astronomy
 
Astronet is working on the next Science Vision and Infrastructure Roadmap. The first drafts from the different working panels is now available on the website (except for one). Comments, feedback or questions from the community are valuable and helpful in finalising this report. Please use the feedback form to get in touch with us. We are also looking to hold a town hall type event in the early part of 2021 to update the community and address any issues which have been raised.
 
The Science Vision and Infrastructure Roadmap revolves around the research themes listed below:
Origin and evolution of the Universe (coming soon)
Formation and evolution of Galaxies
Formation and evolution of Stars
Formation and evolution of Planetary Systems
Understanding the Solar System and conditions for Life
and cross-cutting themes
Societal aspects – education, public engagement climate action, equality, diversity and inclusion
Computing – big data, high performance computing, data infrastructure
The report on the cross-cutting themes is still in progress. We will update the website when they become ready.
 
The first European Science Vision and Infrastructure Roadmap for Astronomy was created by Astronet, using EU funds, in 2007/08, and updated in 2013/14. The new vision and roadmap has an outlook for the next 20 years. A delivery date to European funding agencies of early 2021 is anticipated.
 
Contacts
Malcolm Booy – Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
Kamalam Vanninathan – Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.
 
Feedback
Please note, the published reports are drafts and we are still working on improving/completing it

    Let us know if there are any inaccuracies in the report
    Let us know if there are any gaps/missing topics in the report
    Any other general comments or points you want to raise (max. 500 words)

3) ExMAG Spring Meeting | April 7–8, 2021 | Virtual
The Extraterrestrial Materials Analysis Group (ExMAG, formerly CAPTEM) Spring Meeting will be held virtually on April 7–8, 2021, 1:00–5:00 p.m. EDT.

This will be ExMAG’s inaugural Spring Meeting, and the focus will be on curation of extraterrestrial materials, their allocation, and upcoming sample return missions. The meeting will include NASA HQ and Curation updates, reports on the collections, briefs on sample returns in progress and planned, and talks on advanced curation methods.

IMPORTANT:  If you plan to attend the virtual meeting, complete the Meeting Registration Form no later than April 4, 2021.

During the week of the meeting, registered attendees will receive an e-mail from Houston Meeting Info with virtual connection information.

https://www.lpi.usra.edu/captem/meetings/exmagspring2021/

4) Poste de Project Scientit pour les missions martiennes à l'ESA
Post Project Scientist

This post is classified A2-A4 on the Coordinated Organisations’ salary scale.

Location
ESTEC, Noordwijk, The Netherlands  

Description
You will report to the Head of the Solar System Section in the Science Division, within the Directorate of Science, and, following a period of familiarisation, will be assigned to the post of Project Scientist, initially for the Mars Express and ExoMars Trace Gas Orbiter missions. You will also give support to the Jupiter Icy Moons Explorer (JUICE) mission over the longer term.

The Science Division provides study and project scientist support to the Science Directorate’s missions throughout all phases, including study, implementation, operations and post-operations, and is responsible for ensuring that maximum scientific return is achieved within the technical and programmatic constraints.

The Mars Express mission studies all aspects of the Martian environment, from subsurface to upper atmosphere, and records data on the Martian moons. The Trace Gas Orbiter mission conducts investigations into the biological and geological origin of trace gases, monitors the atmospheric composition, maps the subsurface hydrogen, and images surface features. Both missions provide an in-depth analysis of the history of the Red Planet, in particular regarding the role played by water in all its forms (solid, liquid, gas). The JUICE mission, due to launch in 2022, will perform detailed investigations of Jupiter and its system from 2029 onwards, encompassing their inter-relationship and complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto will complete the comparative picture of the Jovian icy moons.

Duties
Ensuring that maximum scientific return from a mission is maintained as a target throughout all phases (study, development, operations, archiving), within the technical, financial, programmatic and safety constraints;
Coordinating the definition of science requirements with the corresponding Science Study Team or Science Working Team (SST/SWT), and monitoring their implementation during all phases;
Acting, for all scientific matters, as the interface between internal study, development, and operations teams on the one hand, and external scientific teams, partners, and the community on the other;
Preparing and disseminating relevant scientific documentation and reporting to ESA management and, as requested, the Advisory Structure;
Promoting the mission to the wider scientific community via conferences and electronic means, and supporting broader Directorate and Agency communications, outreach, and education activities;
Actively pursuing personal scientific research, and participating in the Section’s research activities.
 
Technical competenciesKnowledge of atmospheric science
Experience in remote sensing retrieval techniques
Experience in interfacing with external parties, especially the scientific community and Principal Investigator teams
Experience of the organisation of international scientific projects or campaigns
Research/publication record
Behavioural competencies
Result Orientation
Operational Efficiency
Fostering Cooperation
Relationship Management
Continuous Improvement
Forward Thinking
Communication

Education
A PhD in planetary sciences is required.
Additional requirements
Knowledge of Mars missions is required. Experience in the analysis and interpretation of planetary mission data is required. Experience in the development of instruments for space missions, their operation and archive is an asset, as is the ability to coordinate projects in parallel. Experience in communications and outreach with the science community and general public is an asset.

Other information

For behavioural competencies expected from ESA staff in general, please refer to the ESA Competency Framework.     

The working languages of the Agency are English and French. A good knowledge of one of these is required. Knowledge of another Member State language would be an asset.     

The Agency may require applicants to undergo selection tests

The closing date for applications is 08 April 2021.

 At the Agency we value diversity and we welcome people with disabilities.  Whenever possible, we seek to accommodate individuals with disabilities by providing the necessary support at the workplace.  The Human Resources Department can also provide assistance during the recruitment process. If you would like to discuss this further please contact us at Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.


5) Research Fellow in Theoretical Molecular Physics at UCL for ExoMol
The ExoMol group at UCL’s Department of Physics and Astronomy is hiring!
We are looking for a researcher to work on development and application of efficient methods of molecular quantum mechanics for producing temperature-dependent pressure shifts and pressure broadening parameters applicable for a large range of temperatures and pressures required for the study and characterisation of the atmospheres of exoplanets and other hot objects and to populate modern spectroscopic databases with line shape parameters. This position is a part of our team of enthusiastic scientists to work on the ERC funded ExoMolHD project.

The full description of the vacancy and application procedure can be found at  https://www.jobs.ac.uk/job/CDU209/research-fellow-in-theoretical-molecular-physics
Interested candidates are welcome to contact Sergey Yurchenko (Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.) and Jonathan Tennyson (Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.) for informal discussion prior to application.

The position is funded for 3 years in the first instance and will start any time soon.

Sergey Yurchenko


6) Postdoc position in numerical methods for exoplanet spectral modeling | Max Planck Institute for Astronomy, Heidelberg
Dear colleagues,

We invite applications for a 3-year postdoctoral research position in the APEx Department of the Max Planck Institute for Astronomy, Heidelberg. We are looking for an expert in numerical techniques and programming to work with us on the modeling of exoplanet spectra. Prior experience in the field of exoplanets is desirable but not required.

The deadline for applications is on April 23rd 2021.

Details on the position and how to apply can be found here: https://jobregister.aas.org/ad/204a6c54

Any inquiries about the position can be send to Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez activer le JavaScript pour la visualiser.

Paul Mollière


7) Thèse, HDR, Séminaires, Cours en ligne

a) The Pluto System story told by resonances | Desantana Thamiris (LESIA) | 15 mars à 16h

-Soit carbonfreeconf: https://www.carbonfreeconf.com/join-conference/208/qUQyqBIXP7CIBxycjTDHs0eIuozY10

-Soit Zoom: https://zoom.us/j/93465435115?pwd=V01OT3BqNitjM2xqTzNrZEVOSUNoUT09

Résumé
The Pluto-Charon system is very interesting due its complex dynamics. Its four small satellites Styx, Nix, Kerberos and Hydra were discovered close to, but not in, the 1:3, 1:4, 1:5, and 1:6 mean motion resonances with Charon, respectively (Cheng et al. 2014). Later, Styx, Nix, and Hydra were found to be in a three body resonance, a special configuration not so common among satellites and that provides clues to the origin of the system (Showalter and Hamilton 2015).

Abstract: In this work, we propose and seek evidence for a path to explain the satellites’ current positions. Our idea is to start with an early Charon migrating under tidal forces from Pluto, and the initial resonant capture of one or more of the small satellites into two-body resonance with Charon. Perhaps the most likely situation is that Styx was first captured into the 3:1 mean motion resonance. Subsequently, Styx would move outward while simultaneously having its eccentricity raised by the resonance. We hypothesize that additional captures of Hydra and Nix into mean motion resonances can, when activated together, turn on the three-body resonance. If the three body resonance takes control, Styx could, in principle, be adiabatially removed from its resonance with Charon and its eccentricity driven back toward zero.

b) Structure and evolution of Triton's atmosphere using stellar occultations | Joana Oliveira (LESIA) | 22 Mars à 16h
Lien carbonfree: https://www.carbonfreeconf.com/join-conference/209/pN203R1zFyOARQxgX79KQMQNB5MVfS

Lien zoom: https://zoom.us/j/91426974142?pwd=QkFFUExzdjlhU2JnWUNjOXRLYmVBdz09
Abstract:

Triton is the largest of Neptune’s satellites with a radius of 1353 km. It possesses a significant atmosphere, mainly composed of molecular nitrogen N2, that is in vapour pressure equilibrium with the N2 frost at the surface.

Between 1990 and 2010, an “extreme solstice” occurred, where latitudes of up to 50º S were directly and constantly illuminated by the Sun. This occurs only every 650 years, due to a combination of Neptune’s heliocentric motion and Triton’s orbital precession.

I this talk, we will be discussing the few stellar occultations by Triton that have been observed.

We will particularly focus on the event of the 5 October 2017, observed from Europe, north Africa, and USA. This event yielded 90 positive light curves, making it the most observed event of Triton.

Our work focused on constraining the evolution of Triton’s atmospheric pressure since the Voyager 2 epoch, as well as deriving the shape of the lower atmosphere from the analysis of the 25 central flashes obtained. We will show the results obtained for the pressure in 2017, and discuss if there has been a surge during the extreme solstice. We also present a new analysis of the original Voyager 2 data, where we were able to extract new information.
c) Soutenance de HDR de Sébastien Besse (ESA) | Spectral and morphological properties of airless planetary surfaces as tracer of their evolution | 30 mars 2021 - 15h

https://us02web.zoom.us/j/81160013500?pwd=d0dFNzV5a1hrM2UvNVRtanpjK3hXQT09
Les surfaces planétaires des lunes, des astéroïdes, des comètes et des planètes sont
extrêmement différentes et reflètent leurs différentes étapes de formation et d’évolution.
Les compositions chimiques, les formations géologiques et les propriétés physiques des
surfaces planétaires sont des atouts remarquables et disponibles pour reconstruire l’histoire
de ces objets. Mes recherches portent sur la compréhension des différentes propriétés de
ces surfaces afin de dessiner une vue plus avancée et plus complète du Système Solaire,
avec l’objectif d’isoler éventuellement les aspects les plus primitifs pour mieux comprendre
la formation des surfaces planétaires. Les processus tels que les impacts et le volcanisme
sont fondamentaux à tous ces objets et leurs comparaisons directes aident à interpréter la
spécificité de chaque objet. De même que l’analyse des formations géologiques sur les petits
corps, je compare les processus volcaniques sur la Lune et Mercure pour mieux décrire les
ressemblances et / ou différences sur la formation et l’évolution des surfaces planétaires. Pour
réaliser ces comparaisons, j’analyse minutieusement les observations du visible au proche
infrarouge renvoyées par les instruments de télédétection et j’en extrais les singularités.


Planetary surfaces ranging from moons, asteroids, comets and planets are extremely
different and reflect various steps of the object’s formation and evolution. Chemical
compositions, geological landforms and physical properties of planetary surfaces are remarkable
assets available to reconstruct the history of these objects. My research focuses on understanding
the various properties of those surfaces in order to draw a more advanced and comprehensive
view of the Solar System, with the objective of possibly isolating the most primitive aspects
to shed light on the formation of planetary surfaces. Processes such as impacts and volcanism
are fundamental for all those objects, and their direct comparisons help to interpret the
specificity of each object. Similarly to analysing morphological landforms on small bodies, I
compare volcanic processes on the Moon and Mercury to better describe the resemblances
and/or differences on the formation and evolution of planetary surfaces. To achieve those
comparisons, I meticulously analyse the visible to near-infrared observations returned by
remote sensing instruments, and extract peculiarities.